## MATH 20D Spring 2023 Lecture 26.

## Solving Systems of Equations Using Eigenvectors.

## Outline

(1) Review of Eigenvalues and Eigenvectors
(2) Solving Systems of Linear Equations

## Contents

## (1) Review of Eigenvalues and Eigenvectors

## (2) Solving Systems of Linear Equations

## Last Time

- Let $A$ be a 2-by-2 matrix. Eigenvalues of $A$ are the scalars $\lambda \in \mathbb{C}$ such that

$$
\operatorname{det}(A-\lambda I)=0
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2-by-2 identity matrix.

## Last Time

- Let $A$ be a 2-by-2 matrix. Eigenvalues of $A$ are the scalars $\lambda \in \mathbb{C}$ such that

$$
\operatorname{det}(A-\lambda I)=0
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2-by-2 identity matrix.

- Given an eigenvalue $\lambda$, the corresponding eigenvectors are the non-zero vectors $\mathbf{v}$ satisfying

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

- Let $A$ be a 2-by-2 matrix. Eigenvalues of $A$ are the scalars $\lambda \in \mathbb{C}$ such that

$$
\operatorname{det}(A-\lambda I)=0
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2-by-2 identity matrix.

- Given an eigenvalue $\lambda$, the corresponding eigenvectors are the non-zero vectors $\mathbf{v}$ satisfying

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

## Example

$A=\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$ satisfies $\operatorname{det}(A-\lambda I)=\lambda^{2}-5$.

## Last Time

- Let $A$ be a 2-by-2 matrix. Eigenvalues of $A$ are the scalars $\lambda \in \mathbb{C}$ such that

$$
\operatorname{det}(A-\lambda I)=0
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2-by-2 identity matrix.

- Given an eigenvalue $\lambda$, the corresponding eigenvectors are the non-zero vectors v satisfying

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

## Example

$A=\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$ satisfies $\operatorname{det}(A-\lambda I)=\lambda^{2}-$ 5. So $A$ has eigenvalues $\lambda_{1}=\sqrt{5}$ and $\lambda_{2}=-\sqrt{5}$.

## Last Time

- Let $A$ be a 2-by-2 matrix. Eigenvalues of $A$ are the scalars $\lambda \in \mathbb{C}$ such that

$$
\operatorname{det}(A-\lambda I)=0
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2-by-2 identity matrix.

- Given an eigenvalue $\lambda$, the corresponding eigenvectors are the non-zero vectors $\mathbf{v}$ satisfying

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

## Example

$A=\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$ satisfies $\operatorname{det}(A-\lambda I)=\lambda^{2}-5$.So $A$ has eigenvalues $\lambda_{1}=\sqrt{5}$ and $\lambda_{2}=-\sqrt{5}$. An eigenvector $\mathbf{v}=\operatorname{col}\left(v_{1}, v_{2}\right)$ with eigenvalue $\lambda_{1}=\sqrt{5}$ satisfies

$$
(A-\sqrt{5} I) \mathbf{v}=\left(\begin{array}{cc}
2-\sqrt{5} & 1 \\
1 & -2-\sqrt{5}
\end{array}\right)\binom{v_{1}}{v_{2}}=\mathbf{0} .
$$

## Last Time

- Let $A$ be a 2-by-2 matrix. Eigenvalues of $A$ are the scalars $\lambda \in \mathbb{C}$ such that

$$
\operatorname{det}(A-\lambda I)=0
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2-by-2 identity matrix.

- Given an eigenvalue $\lambda$, the corresponding eigenvectors are the non-zero vectors $\mathbf{v}$ satisfying

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

## Example

$A=\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$ satisfies $\operatorname{det}(A-\lambda I)=\lambda^{2}-5$. So $A$ has eigenvalues $\lambda_{1}=\sqrt{5}$ and $\lambda_{2}=-\sqrt{5}$. An eigenvector $\mathbf{v}=\operatorname{col}\left(v_{1}, v_{2}\right)$ with eigenvalue $\lambda_{1}=\sqrt{5}$ satisfies

$$
(A-\sqrt{5} I) \mathbf{v}=\left(\begin{array}{cc}
2-\sqrt{5} & 1 \\
1 & -2-\sqrt{5}
\end{array}\right)\binom{v_{1}}{v_{2}}=\mathbf{0} .
$$

So $\mathbf{v}=\operatorname{col}(1,-(2-\sqrt{5}))$ is an eigenvector with eigenvalue $\lambda_{1}$.

## Linearly Independent Eigenvectors

- Two vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are linearly independent if $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are not scalar multiples of one another.


## Linearly Independent Eigenvectors

- Two vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are linearly independent if $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are not scalar multiples of one another.
- If $\mathbf{v}$ is an eigenvalue of $A$ with eigenvalue $\lambda$, then any non-zero scalar multiple of $\mathbf{v}$ is also an eigenvector of $A$ with eigenvalue $\lambda$.


## Linearly Independent Eigenvectors

- Two vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are linearly independent if $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are not scalar multiples of one another.
- If $\mathbf{v}$ is an eigenvalue of $A$ with eigenvalue $\lambda$, then any non-zero scalar multiple of $\mathbf{v}$ is also an eigenvector of $A$ with eigenvalue $\lambda$.
- For applications to systems of ODE's we are most interested in finding a pair of linearly independent eigenvectors of $A$. This may or may not be possible.


## Linearly Independent Eigenvectors

- Two vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are linearly independent if $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are not scalar multiples of one another.
- If $\mathbf{v}$ is an eigenvalue of $A$ with eigenvalue $\lambda$, then any non-zero scalar multiple of $\mathbf{v}$ is also an eigenvector of $A$ with eigenvalue $\lambda$.
- For applications to systems of ODE's we are most interested in finding a pair of linearly independent eigenvectors of $A$. This may or may not be possible.


## Example

For each of the matrices below. Determine whether $A$ admits a pair of linearly independent eigenvectors.

$$
\text { (a) } A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { (b) } \quad A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

## Linearly Independent Eigenvectors

- Two vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are linearly independent if $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are not scalar multiples of one another.
- If $\mathbf{v}$ is an eigenvalue of $A$ with eigenvalue $\lambda$, then any non-zero scalar multiple of $\mathbf{v}$ is also an eigenvector of $A$ with eigenvalue $\lambda$.
- For applications to systems of ODE's we are most interested in finding a pair of linearly independent eigenvectors of $A$. This may or may not be possible.


## Example

For each of the matrices below. Determine whether $A$ admits a pair of linearly independent eigenvectors.

$$
\text { (a) } A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { (b) } \quad A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

- If $\mathbf{v}$ is an eigenvector of $A$ with eigenvalue $\lambda$ then any non-zero scalar multiple of $\mathbf{v}$ is an eigenvector of $A$ with eigenvalue $\lambda$.


## Linearly Independent Eigenvectors

- Two vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are linearly independent if $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are not scalar multiples of one another.
- If $\mathbf{v}$ is an eigenvalue of $A$ with eigenvalue $\lambda$, then any non-zero scalar multiple of $\mathbf{v}$ is also an eigenvector of $A$ with eigenvalue $\lambda$.
- For applications to systems of ODE's we are most interested in finding a pair of linearly independent eigenvectors of $A$. This may or may not be possible.


## Example

For each of the matrices below. Determine whether $A$ admits a pair of linearly independent eigenvectors.

$$
\text { (a) } A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { (b) } \quad A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

- If $\mathbf{v}$ is an eigenvector of $A$ with eigenvalue $\lambda$ then any non-zero scalar multiple of $\mathbf{v}$ is an eigenvector of $A$ with eigenvalue $\lambda$. So eigenvectors of $A$ corresponding to distinct eigenvalues are always linearly independent.


## Contents

## (1) Review of Eigenvalues and Eigenvectors

(2) Solving Systems of Linear Equations

## Review of Constant Coefficient Equations

- Let $a \neq 0, b$, and $c$ be constants. If $y_{1}(t)$ and $y_{2}(t)$ are linearly independent solutions to

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

then a general solution to $(1)$ is

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

where $C_{1}$ and $C_{2}$ are constant.

## Review of Constant Coefficient Equations

- Let $a \neq 0, b$, and $c$ be constants. If $y_{1}(t)$ and $y_{2}(t)$ are linearly independent solutions to

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

then a general solution to $(1)$ is

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

where $C_{1}$ and $C_{2}$ are constant.

- In chapter 4 we learned how to write down linearly independent solutions to (1) by solving the equation $a \lambda^{2}+b \lambda+c \lambda=0$.


## Review of Constant Coefficient Equations

- Let $a \neq 0, b$, and $c$ be constants. If $y_{1}(t)$ and $y_{2}(t)$ are linearly independent solutions to

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

then a general solution to (1) is

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

where $C_{1}$ and $C_{2}$ are constant.

- In chapter 4 we learned how to write down linearly independent solutions to (1) by solving the equation $a \lambda^{2}+b \lambda+c \lambda=0$.
- Secretly we were doing eigenvector/eigenvalue computations with the matrix

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-c / a & -b / a
\end{array}\right)
$$

## Review of Constant Coefficient Equations

- Let $a \neq 0, b$, and $c$ be constants. If $y_{1}(t)$ and $y_{2}(t)$ are linearly independent solutions to

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

then a general solution to (1) is

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

where $C_{1}$ and $C_{2}$ are constant.

- In chapter 4 we learned how to write down linearly independent solutions to (1) by solving the equation $a \lambda^{2}+b \lambda+c \lambda=0$.
- Secretly we were doing eigenvector/eigenvalue computations with the matrix

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-c / a & -b / a
\end{array}\right)
$$

- Indeed $a \lambda^{2}+b \lambda+c \lambda=a \cdot \operatorname{det}(A-\lambda I)$ and the matrix $A$ can be used to express (1) as the matrix equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \quad \text { where } \mathbf{x}(t)=\operatorname{col}\left(y(t), y^{\prime}(t)\right) .
$$

## Constant Coefficient Homogeneous Systems

- The approach to constructing general solutions for 2-by-2 system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) . \tag{2}
\end{equation*}
$$

works just like the case of scalar equation.

## Constant Coefficient Homogeneous Systems

- The approach to constructing general solutions for 2-by-2 system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) . \tag{2}
\end{equation*}
$$

works just like the case of scalar equation.

## Definition

We say that two vector valued function $\mathbf{x}_{1}, \mathbf{x}_{2}: \mathbb{R} \rightarrow \mathbb{C}^{2}$ are linearly dependent on $(-\infty, \infty)$ if there exists a scalar $\alpha \in \mathbb{C}$ such that either

$$
\mathbf{x}_{1}(t)=\alpha \mathbf{x}_{2}(t) \quad \text { or } \quad \mathbf{x}_{2}(t)=\alpha \cdot \mathbf{x}_{2}(t)
$$

for all $t \in \mathbb{R}$.

## Constant Coefficient Homogeneous Systems

- The approach to constructing general solutions for 2-by-2 system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) . \tag{2}
\end{equation*}
$$

works just like the case of scalar equation.

## Definition

We say that two vector valued function $\mathbf{x}_{1}, \mathbf{x}_{2}: \mathbb{R} \rightarrow \mathbb{C}^{2}$ are linearly dependent on $(-\infty, \infty)$ if there exists a scalar $\alpha \in \mathbb{C}$ such that either

$$
\mathbf{x}_{1}(t)=\alpha \mathbf{x}_{2}(t) \quad \text { or } \quad \mathbf{x}_{2}(t)=\alpha \cdot \mathbf{x}_{2}(t)
$$

for all $t \in \mathbb{R}$. Otherwise we say $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are linearly independent on $(-\infty, \infty)$.

## Constant Coefficient Homogeneous Systems

- The approach to constructing general solutions for 2-by-2 system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) . \tag{2}
\end{equation*}
$$

works just like the case of scalar equation.

## Definition

We say that two vector valued function $\mathbf{x}_{1}, \mathbf{x}_{2}: \mathbb{R} \rightarrow \mathbb{C}^{2}$ are linearly dependent on $(-\infty, \infty)$ if there exists a scalar $\alpha \in \mathbb{C}$ such that either

$$
\mathbf{x}_{1}(t)=\alpha \mathbf{x}_{2}(t) \quad \text { or } \quad \mathbf{x}_{2}(t)=\alpha \cdot \mathbf{x}_{2}(t)
$$

for all $t \in \mathbb{R}$. Otherwise we say $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are linearly independent on $(-\infty, \infty)$.
Theorem
Suppose $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are linearly independent solutions to (2).

## Constant Coefficient Homogeneous Systems

- The approach to constructing general solutions for 2-by-2 system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) . \tag{2}
\end{equation*}
$$

works just like the case of scalar equation.

## Definition

We say that two vector valued function $\mathbf{x}_{1}, \mathbf{x}_{2}: \mathbb{R} \rightarrow \mathbb{C}^{2}$ are linearly dependent on $(-\infty, \infty)$ if there exists a scalar $\alpha \in \mathbb{C}$ such that either

$$
\mathbf{x}_{1}(t)=\alpha \mathbf{x}_{2}(t) \quad \text { or } \quad \mathbf{x}_{2}(t)=\alpha \cdot \mathbf{x}_{2}(t)
$$

for all $t \in \mathbb{R}$. Otherwise we say $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are linearly independent on $(-\infty, \infty)$.

## Theorem

Suppose $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are linearly independent solutions to (2). Then a general solution to (2) is

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t) .
$$

where $C_{1}$ and $C_{2}$ are constant.

## Fundamental Matrices

- To prove the theorem on the previous slide one shows that for any initial value problem

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{3}
\end{equation*}
$$

there exist constants $C_{1}$ and $C_{2}$ such that $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$ solves (3).

## Fundamental Matrices

- To prove the theorem on the previous slide one shows that for any initial value problem

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{3}
\end{equation*}
$$

there exist constants $C_{1}$ and $C_{2}$ such that $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$ solves (3).

## Definition

A fundamental matrix for the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is any matrix of the form

$$
X(t)=\left(\mathbf{x}_{1}(t) \quad \mathbf{x}_{2}(t)\right)
$$

where $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ define linearly independent solutions to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

## Fundamental Matrices

- To prove the theorem on the previous slide one shows that for any initial value problem

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{3}
\end{equation*}
$$

there exist constants $C_{1}$ and $C_{2}$ such that $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$ solves (3).

## Definition

A fundamental matrix for the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is any matrix of the form

$$
X(t)=\left(\begin{array}{ll}
\mathbf{x}_{1}(t) & \mathbf{x}_{2}(t)
\end{array}\right)
$$

where $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ define linearly independent solutions to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

- Using the fundamental matrix we can rewrite

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=X(t)\binom{C_{1}}{C_{2}} .
$$

## Fundamental Matrices

- To prove the theorem on the previous slide one shows that for any initial value problem

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{3}
\end{equation*}
$$

there exist constants $C_{1}$ and $C_{2}$ such that $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$ solves (3).

## Definition

A fundamental matrix for the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is any matrix of the form

$$
X(t)=\left(\begin{array}{ll}
\mathbf{x}_{1}(t) & \mathbf{x}_{2}(t)
\end{array}\right)
$$

where $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ define linearly independent solutions to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

- Using the fundamental matrix we can rewrite

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=X(t)\binom{C_{1}}{C_{2}} .
$$

- Hence the condition $\mathbf{x}(0)=\mathbf{x}_{0}$ implies that $\operatorname{col}\left(C_{1}, C_{2}\right)=X(0)^{-1} \mathbf{x}_{0}$.


## Fundamental Matrices

- To prove the theorem on the previous slide one shows that for any initial value problem

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{3}
\end{equation*}
$$

there exist constants $C_{1}$ and $C_{2}$ such that $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$ solves (3).

## Definition

A fundamental matrix for the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is any matrix of the form

$$
X(t)=\left(\mathbf{x}_{1}(t) \quad \mathbf{x}_{2}(t)\right)
$$

where $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ define linearly independent solutions to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

- Using the fundamental matrix we can rewrite

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=X(t)\binom{C_{1}}{C_{2}} .
$$

- Hence the condition $\mathbf{x}(0)=\mathbf{x}_{0}$ implies that $\operatorname{col}\left(C_{1}, C_{2}\right)=X(0)^{-1} \mathbf{x}_{0}$.
- We have $\operatorname{det}(X(0))=\operatorname{Wr}\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](0) \neq 0$ by a version of Abel's theorem.


## Constructing Linearly Independent Solutions

- We've just seen that constructing general solution to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

can be achieved in two steps.

## Constructing Linearly Independent Solutions

- We've just seen that constructing general solution to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

can be achieved in two steps.
(1) Find two linearly independent solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ to (4)

## Constructing Linearly Independent Solutions

- We've just seen that constructing general solution to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

can be achieved in two steps.
(1) Find two linearly independent solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ to (4)
(2) Write down the expression $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$.

## Constructing Linearly Independent Solutions

- We've just seen that constructing general solution to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

can be achieved in two steps.
(1) Find two linearly independent solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ to (4)
(2) Write down the expression $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$.

- In the case when $A$ has two linearly independent eigenvectors, we can complete step (1) by using the following theorem.


## Constructing Linearly Independent Solutions

- We've just seen that constructing general solution to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

can be achieved in two steps.
(1) Find two linearly independent solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ to (4)
(2) Write down the expression $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$.

- In the case when $A$ has two linearly independent eigenvectors, we can complete step (1) by using the following theorem.


## Theorem

Suppose A has two linearly independent eigenvectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$.

- We've just seen that constructing general solution to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

can be achieved in two steps.
(1) Find two linearly independent solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ to (4)
(2) Write down the expression $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$.

- In the case when $A$ has two linearly independent eigenvectors, we can complete step (1) by using the following theorem.


## Theorem

Suppose A has two linearly independent eigenvectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$. Let $r_{1}$ and $r_{2}$ denote the eigenvalues of $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ respectively.

- We've just seen that constructing general solution to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{4}
\end{equation*}
$$

can be achieved in two steps.
(1) Find two linearly independent solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ to (4)
(2) Write down the expression $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$.

- In the case when $A$ has two linearly independent eigenvectors, we can complete step (1) by using the following theorem.


## Theorem

Suppose A has two linearly independent eigenvectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$. Let $r_{1}$ and $r_{2}$ denote the eigenvalues of $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ respectively. Then

$$
\mathbf{x}_{1}(t)=e^{r_{1} t} \mathbf{v}_{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{r_{2} t} \mathbf{v}_{2}
$$

give a pair of linearly independent solutions to (4).

## A First Example

## Example

## Write down a general solution to the equation

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right) \mathbf{x}(t)
$$

